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Abstract—The problem of robotic grasping is still an unsolved
problem with many approaches trying to generalize grasp pre-
dictions for unseen and dynamic environments. In this paper,
we propose a complete end-to-end pipeline for the task of Deep
Learning based robotic grasping on a lowcost 5-DOF arm. We
explore Transfer learning approach and then train our grasping
model from end-to-end. In the transfer learning approach we
tried 2 base models, VGG-16 and ResNet-50. Our grasping model
when ResNet-50 is used as base architecture provided better
results with a testing accuracy of 83.3% while VGG-16 provided
an accuracy of 78.2%. In order to test our model on a real
robotic arm, we built a 5-DOF arm and added a custom parallel
plate gripper. Complete ROS and Moveit support is added to
our developed robotic arm. The processed RG-D image from
the KinectV2 camera is given as an input to the model which
predicts the 5-D grasp configuration. Required electronic system
design and its PCB is built which controls the robotic arm. The
predicted 5-D grasp configuration is then transformed to the
object pose w.r.t the base link frame of the robot. Lastly, a ROS
node is written that automates the task of picking objects lying in
different positions & orientations and sends the joint angle values
over pyserial communication to the microcontroller’s PCB.

Index Terms—Robotic Grasping, Deep Learning, CNN, Grasp-
ing Pipeline, Grasp detection

I. INTRODUCTION

We humans are capable of recognising distinct items and
determining how to pick them up quite instantly. Robotic
capabilities are far behind. For decades, researchers have
attempted to develop cognitive robots with the same level of
handiness as humans. Despite research and business interest,
robotic grasping still remains an unsolved problem. This is
due to inaccurate potential grasp recognition, which hinders
the selection of the ideal grasp for a given object. Many
recent studies have addressed this problem by recasting it
as a detection problem that utilizes visual components of
the image to decide where the robotic gripper should be
positioned. Recent research has focused on the application of
deep learning approaches to improve performance in the areas
of visual perception, Autonomous vehicles, audio recognition,
personalized product recommendation and natural language
processing, opening up new possibilities in the field.

So the key difficulty where we may use deep learning
methods is to design robots which can operate in unknown,
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dynamic and ever-changing environments (e.g. cluttered en-
vironments, household environments, bin-picking, healthcare
facilities, etc). Deep learning-based algorithms are used in
robotic grasping to perform the task automatically without the
need for human intervention. These methods are categorised
primarily by the kind of learning methods utilised, such as
Supervised learning or Reinforcement learning as put forth in
[1].

Typical pipelines for Deep learning-based robotic grasping
approaches usually contain determination of the accurate ob-
ject pose, selection of suitable grasp pose on the test object,
path planning and lastly execution of complete grasping task.
When models are trained in simulation, sim-to-real techniques
are required for implement the model in real-world, so the
model can perform up to par in the real world. Also, ap-
proaches can use both RGB as well as RGB-D data to estimate
the grasp pose.

II. LITERATURE REVIEW

In [2], the authors aim to Predict a 5-D grasp configuration
using a Lightweight CNN model. They have trained on the
Cornell Grasping dataset. SqueezeNet-RCM model is directly
applied on the RGB-D image while using a symmetric parallel
gripper. Grasp configuration for a 3 finger gripper using
point cloud data is determined in [3] and Object point cloud
segmentation is done using a variant of PointNet architecture.
Also, a 4-dimensional grasping configuration is used in this
research which is not as common as a 5-dimensional one.

In [4], the authors aim to improve grasping using a self-
supervised approach. The network is corrected in 2 ways:
Obtaining new possible grasping points & Pruning incorrect
grasping points predicted candidates. Research in [5] outper-
forms the current state of the art techniques both in terms of ac-
curacy and as well as speed. The accuracies achieved by them
are: 89.21% image-wise split and 88.96% object-wise split.
Authors have used two approaches: a) Unimodal: With only
RGB images, ResNet 50 pre-trained on ImageNet Dataset.
b)Multimodal: With RGBD data, converted to two data: RGB
and Depth. Both are fed parallelly to the network. In [6], Deep
Neural Network architecture with ResNet-50 is proposed.
Grasp orientation is determined using classification instead
of Regression. ( i.e theta=180 degree is divided into total 20
labels. This solution detects and localizes grasps at around 8fps
with 89.0% grasping success rate. [7] attempts to determine978-1-6654-7350-7/22/$31.00 ©2022 IEEE
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Fig. 1: Complete Block Diagram of our System.

ideal grasping parameters, in a complex environment, with
densely located objects. The proposed approach, which com-
prises of the REG-model, probabilistically expresses the ease
with which a robotic hand can grasp a target object. Moveit
was used for Path planning. They achieved Grasping success
rate of 82%. In [8] light-weight generative Grasp convolutional
Neural Network is presented which predicts the grasp pose in
non-static environments.

Fig. 2: Grasp configuration representation.

III. PROBLEM STATEMENT

The problem statement consists of grasping unknown, un-
ordered, and randomly oriented objects. Normally in Industries
Robotic arms can pick objects that are initially placed in a
predefined order for example an assembly line. The robot is
hardcoded to pick and place known items. But what if the
items are unknown or placed in a random manner or what if
there are multiple objects stacked in a place and we want to
separate items individually. This is where a Computer Vision
based algorithm is needed. The arm should automatically
orient itself in a suitable grasping position which will be
different for different objects.

By analyzing the RGB-D image from the camera, a 5-
dimensional grasp configuration needs to be predicted. The
grasp configuration(g) includes the location of the gripper

(x, y), the angle(θ) between the horizontal axisand gripper
plate, gripper opening distance(h) and width of the gripper(w).
The Grasp Configuration is represented as shown in the Ref.
Figure 2. Thus our Learning model should outputs this grasp
configuration, from where we calculate the grasp pose of the
object. The grasp configuration is given by the following
equation: g = {x, y, θ, w, h}T . The two main points of
problem statement that we wish to address are:

• Grasping different types of objects having different shape
and size. Ref. Figure 3a

• Grasping object which is in different pose(i.e. position
and orientation). Ref. Figure 3b

(a) (b)

Fig. 3: a) Different Test Objects from Cornell Dataset. b) Test
Object having different Orientation and Position.

IV. PROPOSED SOLUTION

This research examines how deep learning algorithms can
be used to train robotic arm to grasp different objects in
unstructured environments. A custom Deep Learning based
robotic grasping model is developed. The model is based on
Transfer Learning and predicts the 5-D grasp configuration.
We also make use of an external RGB-D camera(Kinect
v2). Pre-processing of the real world Kinect data is also
an important step. This is accomplished using a variety of
image processing software libraries. The neural network is
then used to recognise grasp rectangles from the Kinect
captured image. Since a very few studies have described end-
to-end grasping pipleline which includes testing the Model’s
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accuracy on a real robotic platform, we built our own 5-
DOF robotic arm with the help of all the available low cost
electronic components. We also developed a PCB for it and
wrote its complete low level embedded code on an Arduino
Nano microcontroller. Complete ROS & Moveit support is
provided for the developed robotic arm. Thus, full end-to-end
grasping pipeline is established right from capturing RGB-D
image, prediction of rotated bounding boxes, ROS and moveit
support for the robotic arm, 3D grasp pose determination from
predicted grasp configuration, Transforms from 2D image to
the base link and finally the trajectory planning of Robotic
arm.

V. METHODOLOGY

A. Data Preprocessing

We have used Cornell Grasp Dataset for the training pur-
pose. It contains 885 RGB images, Point cloud data, labelled
positive rectangles and labelled negative rectangles. These
images are of nearly 240 different objects such as fruit,
scissor, marker, brush, tools and few other household objects.
The positive and negative rectangles simply signifies good
and bad graspable locations. All these RGB images in the
dataset have a size of 640 pixels in width and 480 pixels
in height. The depth information for each image is extracted
from the Pointcloud data available in the dataset. Also the
depth information ranging from 0.5 - 2.5m is then normalised
to fall between 0 and 255. In depth images the white value
increases as the depth increases. Some pixels lack depth
information(NaN) because they are occluded; we substitute
these pixel values with 0.

Now that we have grayscale depth image, the blue channel
of colored RGB image is replaced by the D channel in order
to create the RG-D images. We cannot directly combine RGB
image and Depth image to form a 4 channel RGB-D data.
Because most of the pre-trained neural network models only
accept 224x224x3 channel images. While Cornell dataset is a
relatively small grasping dataset, the data best suits parallel
plate gripper and multiple labelled grasps are provided per
image. Hence we augmented the Cornell Grasping Dataset
with random translation and rotations which generates 125
augmented data for each image. In pre-processing first we
center crop image to width and height of 320 x 320 pixels.
Then we translate the image randomly upto 50 pixels in both x
and y direction and randomly rotate it between 0 to 360 degree.
Also the annotations for augmented images were generated by
appropriately translating and rotating the original coordinates.
Finally the image is resized to 224 × 224 pixels to fit the input
of VGG-16 [9] and ResNet-50 [10] architecture.

B. Model Architecture

We have employed the model architecture as shown in
Figure 4 which is based on the VGG16 architecture with a
few modifications in the classifier part or the fully connected
layers. The last fully connected layer is removed and 2
fully connected layers are added for 2 different outputs i.e.
Cls score and Rect pred. The Cls score is nothing but the

Fig. 4: Our Model Architecture based on VGG16

predicted grasping angle(θ). 180 degrees are divided into
20 groups or classes of 9 deg each. The second output i.e
Rect pred gives the predicted rectangular bounding boxes. The
model takes an input RGD image of size 224 x 224 x 3.

Both the models with base of VGG-16 and ResNet-50 were
trained on the Nvidia DGX system. Pytorch, with CUDA
enabled GPU support was setup in Docker environment. We
used the SGD optimiser with a momentun of 0.9 which decays
the learning rate. As already mentioned the model output are
two entities. One is the Cls score vector which is passed
through a softmax function. As this is a classification output
we use the cross entropy loss. Second output entity is the
predicted rectangle. This is a regression output. Now, for
calculating the total loss, we take the sum of these two losses.
The model is trained for 30 epochs, with a learning rate of
0.001 for ResNet50 and 50 epochs with learning rate of 0.0001
for VGG16. The batchsize is 64.

C. Real world Transforms

1) Camera Transforms: We have used Kinect v2 RGB-
D camera for taking visual feedback along with the depth
information of the objects which are to be picked. All the
available cameras always perform some kind of transformation
from 3D world coordinates to the local 2D space coordinates.
In short camera takes real-world 3D scene and maps it into
the 2D image plane. And in order to determine and understand
the acquisition system we need to find the parameters of
transformation. These parameters are classified into two types:

• Intrinsic parameters
• Extrinsic parameters
2) Intrinsic Parameters: Intrinsic parameters are the pa-

rameters that maps the 3D camera coordinate system into the
2D Image coordinate system. Intrinsics are specific to a given
Camera. Intrinsic parameters are given by:

K =

fx s x0

0 fy y0
0 0 1


Here, (fx, fy): Scale factors in pixel along x and y direction

respectively. In a true pin-hole camera focal length fx and fx
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both have the same.
(x0, y0): Camera center in pixel.
fx = F/px
fy = F/py
s = fx ∗ tan(α)
(px, py): Size of pixel in world units.
F : It is the Focal length
s : Skew coefficient, which is non-zero if the image axes are
not perpendicular.

3) Extrinsic Parameters:: Extrinsic Parameters are the pa-
rameters that determine the pose of the camera(ie. The orien-
tation and location) with respect to the world coordinates. It
has two components, Translation and Rotation.

R =

R1

R2

R3

 =

fx 0 x0

0 fy y0
0 0 1

 ; t = Ow −Oc

Where,
Oc: centre of Camera coordinate system
Ow: centre of World coordinate system
R: Rotation Matrix describes the camera’s orientation w.r.t.
to world coordinate
t: Translation vector describes the change in position of the
coordinate centre Ow and Ow.
The Rotation matrix R and Translation vector t inturn
represent the extrinsic parameters of the camera. It can be
represented in the form

[
R | t

]
=

 r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3


4) Getting Real-world coordinates:: Now combining both

the intrinsic and extrinsic camera calibration Matrix we get a
Projection matrix P. Where

P =

Intrinsic Matrix︷︸︸︷
K ×

Extrinsic Matrix︷ ︸︸ ︷
[ R | t ]

=

Intrinsic Matrix︷ ︸︸ ︷1 0 x0

0 1 y0
0 0 1


︸ ︷︷ ︸
2D Translation

×

fx 0 0
0 fy 0
0 0 1


︸ ︷︷ ︸

2D Rotation

×

0 s/fx 0
0 1 0
0 0 1


︸ ︷︷ ︸

2D Shear

×

Extrinsic Matrix︷ ︸︸ ︷(
I|t

)︸ ︷︷ ︸
3D Translation

×
(

R 0
0 1

)
︸ ︷︷ ︸
3D Rotation

Now the relation from 2D pixel coordinate to 3D real world
coordinate is given by:

xt = PX

Where,
xt : [x y z]T

P : Projection matrix consisting of intrinsic and extrinsic
parameters

X : 3D real world coordinates in the world frame

Now, to get the pixel coordinates by transforming the image
coordinates: we simply divide x, y by z to get homogeneous
coordinates in the image plane.
[x, y, z] to [u, v, 1] = [x/z, y/z, 1]

Thus if we want the to find out the 3D real world coordinate
from the 2D pixel coordinate then we simply have to use the
following equation:

X = P−1 · xt

D. Moveit-Setup Assistant

We use the ROS package ‘Moveit!’ to configure Inverse
Kinematics for our custom written URDF of our robot. First
we launch the moveit setup assistant and give it the path
of the located urdf file. Further, we define a link in our
robot that will act as the end effector. In our case, the link
‘hand’ is our end effector. We used the KDL IK solver due
to its robust performance and reliability in finding Optimised
solutions. Then, we defined multiple predefined poses for the
robot named home, idle and pick. Finally, the setup assistant
generates a package for us that we will be using for movement
and path planning of the robotic arm.

E. Communication between ROS and Arduino

In order to communicate between the ROS environment
from our Laptop to the Arduino we need a communication
protocol which could send the joint angles. These joint angle
values need to be sent continuously along the trajectory to
the Robotic arm working on Arduino. For achieving so we
made use of Pyserial python library. The Python API module
PySerial is essentially used for serial communication between
any microcontroller and the Arduino. The data was sent at a
baud rate of 9600.

Fig. 5: Communication between ROS and Arduino

VI. HARDWARE IMPLEMENTATION

A. Hardware - Robotic Arm Structure

The robotic arm is primarily assembled using CNC cut sheet
metals made of stainless steel. 3D printed rack and pinion
are used to actuate the parallel plate gripper. The weight of
the entire robotic arm is 3kg. The arm originally was a 4
DoF and was unable to perform rotation in the z-axis (yaw
movements) because the wrist DoF motor was absent. Also,
the yaw movement is particularly important for us to achieve
grasping from random positions and orientations of the object.
Therefore, we added an extra degree of freedom by mounting
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a servo motor on the arm using a custom 3D printed clamp as
shown in the Figure 6a. We also made the complete electronic
circuit design & PCB for the same.(Ref. Fig 6b)

(a) (b)

Fig. 6: a) Developed Robotic Arm with added DOF. b)
Designed & Implemented PCB board.

VII. EXPERIMENTAL SETUP

A. Robotic Arm workbench setup

The trained grasping model’s robotic gripping capacity was
demonstrated using our modified 5-DOF arm. Our robotic
arm has a maximum range of 320 mm, a maximum payload
capacity of 100g (excluding the weight of the end-effector).

Parameters Value
Arm Maximum Reach 32 cm
Payload Capacity 100g
Kinect Height 105cm
Gripper Width 10-42 mm
Power Requirement 5V-4Amps
DOF 5
Motors Used Servo HS-475HB

TABLE I: Experimental Setup Parameters

The ROS infrastructure is used to control the entire robotic
system. As the arm is custom, Moveit is used for inverse
kinematic solver, which is used to direct the arm to pick up
things once their grip locations have been identified. Color and
depth images i.e RGB-D; of the work area are captured using
a Microsoft Kinect v2 camera. To interface kinect with ROS
libfreenect2 [11] and iai kinect2 [12] packages were used. We
have used the Arduino Nano for controlling the arm movement
and for communication with the laptop in order to receive
the joint angles. The Kinect is mounted on top for getting
the grasping pose. It is located on top of the work space
so basically it is a hand-to-eye system. Additional physical
parameters can be found in the Table I. The experimental setup
can be seen in Figure 7.

B. Pick and Place Taskflow

Now, that we have the setup ready, the following steps define
the taskflow which is going to be followed:

Fig. 7: Experimental Setup

• HOME: We keep the arm initially at the defined home
position.

• GET-POSE: First, we obtain the dynamic grasp config-
uration of test object from the model. Then we pass it to
the ROS node that commands the arm to move.

• PRE-PICK: Before moving the arm, we ensure that the
gripper is completely open. The arm moves to a position
that is 5 cm above the object.

• PICK: Then the arm moves downwards(Z axis) to pick
the object. Once the end effector reaches the desired pose,
the gripper closes to grasp the object.

• POST-PICK: Before moving to the drop position the arm
moves upwards in the Z axis to verify the grasp.

• DROP: Then the arm moves to the pre-defined drop
location that is kept same for all objects and opens the
gripper to drop the object.

• HOME AGAIN: Finally, the arm returns to the initial
home position and is ready to take the next grasp config-
uration.

VIII. RESULTS

All the grasp configurations that are predicted by our grasp-
ing model shall be evaluated in order to determine whether it
is an acceptable grasp or not. In most of the object detection
cases we can fairly use rectangular metric for evaluation. But
in our case since the predictions are rotated bounding boxes we
need to take grasp angle detection in account too. As a result,
our standard Jaccard Index metric is somewhat adjusted, and
the addition of grasp angle detection is also taken into account.
Thus, the new metric defines a successful grasp under the two
conditions listed below.

1. The difference in grasp angles should be less than 30◦.
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2. Between the two grasps, the jacquard index should
be greater than 25% The following equation generates the
Jacquard index (J):

J(A,B) =
|A ∩B|
|A ∪B|

The Ref. Table II displays the IOU scores and accuracy’s.
For our Grasping Architecture based on VGG16, testing
accuracy of 78.2% was achieved. Whereas for our another
architecture based on Resnet50, testing accuracy of 83.3%
was achieved.

Base Model Training
IOU

Training
Accuracy

Testing
IOU

Testing
Accuracy

VGG16 Regression+
Classification

0.48 84.4% 0.45 78.2%

Resnet Regression+
Classification

0.62 92% 0.52 83.3%

TABLE II: Results.

A. Experimental Results on our Robotic arm Setup

There are just a handful studies that have used genuine
robotic hardware to do grasping. Although the evaluation
metrics indicate that the grasp detection is adequate, the results
from actual robotic grasping will affirm the grasp detection
results. So we tested our Grasping model and the entire
grasping pipeline on our 5-DOF Robotic arm Setup. Test was
done on nearly 5 different objects and for each object 10 trails
were performed.(Ref. Table III) In Ref. Figure 8 we can see the
real-world prediction result on the test object marker placed on
our workbench area. The figure also shows our 5-DOF Robotic
arm which is places within the FOV of Kinect camera.

Objects Trials Picking Accuracy(%)
Screwdriver 10 90
Marker 10 100
Tape 10 70
Bottle cap 10 80
Glue-stick 10 90

TABLE III: Experimental Results on our Robotic arm Setup

Fig. 8: Realworld Prediction Result.

IX. CONCLUSION

Thus in this work we presented a Deep Learning based
robotic grasping model and also developed a full-fledged task
flow for robotic grasping on an actual 5-DOF robotic arm.
Modifications were made to the existing 4-DOF robotic arm
and an additional DOF was added to it. Required electronic
design system and PCB was also made. Embedded low level
code was written on an arduino-nano micro-controller in order
to control the robotic arm. Also ROS and Moveit support
was provided for the custom low cost robotic arm. The
implementation of the deep learning model on the real robotic
platform had promising results. We see our work as a stepping
stone in our journey to explore the unexplored world of
learning based robotic grasping. Robotics is an evolutionary
field and number of robotic arms in manufacturing units and
warehouse automation has been exponentially increasing. Thus
in coming future we see that deep learning based approaches
will be widely used by robotic arms so as to perform pick &
place operation in unstructured environments. That day won’t
be far when robotic arms on a personal robot having cognitive
abilities will be used in our homes too.
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